120 research outputs found

    Comparison of stabilization by Vitamin E and 2,6-di-tert-butylphenols during polyethylene radio-thermal-oxidation

    Get PDF
    This paper reports a compilation of data for PE+Vitamin E and 2,6-di-tert-butylphenols oxidation in radio-thermal ageing. Data unambiguously show that Vitamin E reacts with P° and POO° whereas 2,6-di-tert-butyl phenols only react with POO°. Kinetic parameters of the stabilization reactions for both kinds of antioxidants were tentatively extracted from phenol depletion curves, and discussed regarding the structure of the stabilizer. They were also used for completing an existing kinetic model used for predicting the stabilization by antioxidants. This one permits to compare the efficiency of stabilizer with dose rate or sample thickness

    A statistical theory of polymer network degradation

    Get PDF
    A statistical theory was proposed for the degradation (random scission of chains) of a network having f-functional nodes in the case where all chains contain equireactive groups and a chain scission event does not create new groups or suppress more than one group. Closedform relations were established between the conversion ratio of the degradation process and the crosslink density. Emphasis was put on the value of the conversion ratio for which the gel disappears. Some limited cases already considered in the literature were recovered, but a general solution was proposed for networks having any number of reactive groups per chain, be it uniform or not, and for conversion ratios up to the degelation point. The results were applied successfully to recent experiments regarding the hydrolysis of a polyester

    Co-oxidation kinetic model for the thermal oxidation of polyethylene-unsaturated substrate systems

    Get PDF
    The thermal oxidation of polyethylene (PE) impregnated by the methyl esters of unsaturated fatty acids (UFEs) was studied using chemiluminescence, and infra-red spectrophotometry. It was shown that the presence of UFEs accelerates the PE aging process. This can be interpreted as a co-oxidation phenomenon. In this study, the previously established models for PE and UFEs self-oxidation have been coupled in order to develop a co-oxidation model. Using the existing rate constants for the PE and UFEs selfoxidations, this model can simulate the complex shape of the kinetic curves of PE-UFE co-oxidatio

    A general kinetic model for the photothermal oxidation of polypropylene

    Get PDF
    A general kinetic model for the photothermal oxidation of polypropylene has been derived from the basic auto-oxidation mechanistic scheme in which the main sources of radicals are the thermolysis and photolysis of the most unstable species, i.e hydroperoxides. Thermolysis is a uni- or bi-molecular reaction whose rate constant obeys an Arrhenius law. In contrast, photolysis is exclusively a unimolecular reaction and its rate constant is independent of temperature. According to the quantum theory, this latter is proportional to the energy absorbed by photosensitive species and thus, accounts for the impact of UV-light intensity and wavelength on the global oxidation kinetics. The validity of this model has been checked on iPP films homogeneously oxidized in air over a wide range of temperatures and UV-light sources. It gives access to the concentration changes of: (i) primary (hydroperoxides) and secondary (carbonyls) oxidation products, (ii) double bonds, (iii) chain scissions and crosslinking nodes, but also to the subsequent changes in molecular masses. These calculations are in full agreement with the photolysis results reported by Carlsson and Wiles in the 70s [1–3]. However, the model seems to be only valid for UV-light energies equivalent to about 10 suns as upper boundary, presumably because of multiphotonic excitations or chromophores photosensitization (i.e. termolecular photo-physical reactions), both enhanced at high irradiances

    Influence of temperature, UV-light wavelength and intensity on polypropylene photothermal oxidation

    Get PDF
    A criterion based on the energy absorbed by photosensitive species was proposed to describe the contribution of UV-light to the initiation of the polypropylene photothermal oxidation whatever the light source. The calculation of this energy was performed using the widely accepted quantum theory. The criterion was then introduced in two different types of analytical models commonly used to describe the combined effects of UV light and temperature on induction time, namely: the reciprocity law and kinetic model. The limitations of both types of analytical models were then investigated: the latter, derived from a realistic mechanistic scheme, was found to be much more relevant than the former, which is presumably valid in a restricted range of light intensities, essentially due to its empirical origin

    Tensile properties of polyproylene fibres

    Get PDF
    As soon as it appeared on the market, one half century ago, polypropylene (PP) appeared as a promising fibre-forming polymer but with some difficulties in processing due to a lack of control of its viscoelastic properties and in durability due to its low stability to oxidation. These difficulties were progressively resolved in the last decades by a sharper control of synthesis conditions e.g. of stereoregularity and molar mass distribution, and by a better knowledge of oxidation and stabilization mechanisms. These research efforts allowed PP to invade a very wide range of fibre applications, from disposable diapers to geotextiles

    Biodiesel permeability in polyethylene

    Get PDF
    This paper reports solubility and diffusivity data for soy and rapeseed methyl esters in polyethylene together with comparisons with methyl oleate and linoleate. These data showed that there is no significant difference in diffusivity and solubility between all these penetrants. Data were used to discuss the reliability of predictive models for diffusion and solubility of additive type molecules into semi-crystalline thermoplastic polymers. Permeability data were monitored by a new device, the results from which are in reasonable agreement with theoretical considerations on solubility and diffusivity. They also showed that biodiesels are less aggressive towards polyethylene than diesel from a petrochemical source

    Stabilization of irradiated polyethylene by introduction of antioxidants (vitamin E)

    Get PDF
    The aim of the present chapter is first to recall the general principles of stabilization. Since vitamin E is particularly adapted in the case of biomaterials, because of its low toxicity, its stabilizing mechanism and performances will be detailed, together with some experimental methods aimed at quantifying residual vitamin E after the complex elaboration process of hip. The existing literature will be reviewed so as to extract the kinetic parameters (rate constants for reactions with radicals, diffusion and solubility coefficients) necessary to perform kinetic modeling for a more complex description of the radio-thermal oxidation of PE + vitamin E. Those data will be compared with data for other common hindered phenols in order to highlight the interest of vitamin E for stabilization of hips. We will also present some practical cases of vitamin E stabilized UHMWPE and some experimental methods to detect and quantity Vitamin E in non-degraded or degraded materials

    Radiochemical 'degelation' of polymethyl methacrylate networks

    Get PDF
    Methyl methacrylate-ethylene glycol dimethacrylate networks were synthetized and submitted to radiochemical degradation, with ageing monitored by means of sol-gel analysis. The networks were shown to undergo chain scission predominantly, which leads to their degelation, i.e., the recovery of a thermoplastic-like behavior with loss of all elastically active chains. The degelation dose was shown to increase with crosslink density and the corresponding critical conversion ratio was discussed regarding a recent and general statistical theory that covers radiochemical as well as chemical chain scissions

    Thermooxidative aging of polydicyclopentadiene in glassy state

    Get PDF
    Thermal aging of thin films of unstabilized polydicyclopentadiene (pDCPD) at several temperatures ranging from 120 to 30 C was investigated by means of carbonyl build up by FTIR with ammonia derivatization, double bond titration, mass uptake measurement, hydroperoxides titration by iodometry and DSC coupled with sulfur dioxide treatment. In the temperature range under investigation, pDCPD is in glassy state and it oxidizes faster than common polymers oxidized at rubbery state (e.g. polydienic elastomers). Using the kinetic analysis, these results were ascribed to increased initiation rate due to catalyst residues, some possible intramolecular processes favoring propagation, or a very low termination rate of oxidation radical chains because of the control of termination reactions by macroradical diffusion
    corecore